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At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached
shear layers which have transitioned to turbulence. It is the goal of the present
study to investigate the effects which viscoelasticity has on this state and to identify
the mechanisms responsible for wake stabilization. It is found through numerical
simulations (employing the FENE-P rheological model) that viscoelasticity greatly
reduces the amount of turbulence in the wake, reverting it back to a state which
qualitatively appears similar to the Newtonian mode B instability which occurs at
lower Re. By focusing on the separated shear layers, it is found that viscoelasticity
suppresses the formation of the Kelvin–Helmholtz instability which dominates for
Newtonian flows, consistent with previous studies of viscoelastic free shear layers.
Through this shear layer stabilization, the viscoelastic far wake is then subject to the
same instability mechanisms which dominate for Newtonian flows, but at far lower
Reynolds numbers.
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1. Introduction
In Newtonian flow past a circular cylinder, transition to turbulence occurs in several

distinct stages as the Reynolds number is increased, and this path of transition is
outlined nicely by Williamson (1996b). From the two-dimensional, vortex-shedding
wake, three-dimensional instabilities begin to form around Re ≈ 190 through a
secondary instability known as the mode A instability. At a Reynolds number of
approximately 260, this mode A instability gives way to a second type of three-
dimensional instability, known as the mode B instability, which becomes increasingly
disordered as Re is further raised. It was shown in our previous works (Richter,
Iaccarino & Shaqfeh 2010; Richter, Shaqfeh & Iaccarino 2011) that viscoelasticity has
a profound impact on these mode A and mode B instabilities, which both can be
completely suppressed depending on the rheological parameters chosen. This ability
to stabilize the early stages of transition in the cylinder wake through the presence
of polymeric additives is important from the perspective of both fundamental fluid
mechanics as well as engineering applications, and gives rise to a natural extension:
How does viscoelasticity affect the later transition stages which occur at higher
Reynolds numbers? Characterizing this effect will assist in the further development
of polymer injection as a viable flow-altering device in the context of a bluff body
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wake. For example, injection of dilute polymer solutions from a marine propeller has
been investigated on numerous occasions due to its ability to alleviate the issue of
tip vortex cavitation (Chahine, Frederick & Bateman 1993; Fruman, Pichon & Cerrutti
1995; Yakushiji 2009). Therefore, to answer this fundamental question, a study was
performed for non-Newtonian flow past a cylinder at Re= 3900.

At this Reynolds number, numerous experimental and numerical studies exist for
Newtonian flows which largely focus on the instability which develops in the separated
shear layers at Re = O(1000). Roshko (1954) was among the first to discover
the existence of this unstable shear layer, and later Bloor (1964) made the first
measurements of the characteristic frequency of this instability, noting that it was
higher than the primary vortex-shedding frequency and that it scaled with Reynolds
number. More recently, numerical studies have provided invaluable insight into the
cylinder wake at Re = 3900: Beaudan & Moin (1994) performed the first large eddy
simulation (LES) for this flow; Kravchenko & Moin (2000) also performed LES
simulations but using higher-order B-splines, and found improved agreement with
the experimental data of Ong & Wallace (1996); Ma, Karamanos & Karniadakis
(2000) performed combined LES/DNS (direct numerical simulation) to obtain more
accurate turbulence statistics and attempted to resolve the question of the shape
of the near-wake mean velocity profile; Parnaudeau et al. (2008) performed a
combined experimental and numerical study to further improve LES validation; and
Rai (2010) studied intermittency of turbulence within the shear layer, motivated by the
experimental findings of Prasad & Williamson (1997).

For viscoelastic flows, however, the literature is not nearly as complete. For high
Reynolds number flows, nearly all numerical investigations are limited in their focus
to some aspect of turbulent drag reduction (see for example Sureshkumar, Beris &
Handler 1997; Dimitropoulos, Sureshkumar & Beris 1998; Dimitropoulos et al. 2001;
Stone et al. 2004; Dimitropoulos et al. 2006; Kim et al. 2007). Ma, Symeonidis &
Karniadakis (2003) used their unstructured spectral element formulation to simulate
flow over a three-dimensional ellipsoid at Re= O(1000), but their study was limited to
low Weissenberg number and emphasized their novel numerical technique rather than
physical effects within the wake.

Relevant experimental investigations, similarly, are few in number. Kato & Mizuno
(1983) measured drag forces and pressure distributions along the cylinder surface
of a flow of dilute polyethylene oxide (PEO) (with molecular weights ranging
between 2 × 106 and 4 × 106 g mol−1) at Reynolds numbers up to Re = 105. In
general, reduced drag was seen at high Re with the addition of the polymer
solutions, due to a rise in back pressure along the downstream side of the cylinder.
Sarpkaya, Rainey & Kell (1973) also performed drag measurements in flows of
polyethylene oxide (WSR301) at high Reynolds numbers, but much of the focus
of their work was on the effect of additives near the cylinder drag crisis (which
occurs in Newtonian flows at Re = O(105)). Despite this, measurements were still
made between Re = 104 and Re = 105, and they reported a significant reduction in
drag, accompanied by a forward movement of the separation point on the cylinder
and a narrowing of the wake (in terms of the y location at which significant velocity
fluctuations could be measured) with additions of dilute polymer solutions. Near the
drag crisis, they report that polymer additives actually precipitate the onset of this
instability, destabilizing the flow within the cylinder boundary layer. Coelho & Pinho
(2003a,b, 2004) performed experiments using two different significantly shear-thinning
fluids (methyl hydroxyethyl cellulose (tylose) and carboxymethyl cellulose sodium salt
(CMC)), and observed different responses of the flow due to shear thinning versus
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elasticity. Reductions in the critical Reynolds numbers which mark the onset of three-
dimensional transition as well as shear layer transition were observed, due mainly to
the shear-thinning behaviour of the fluid. Contrary to this, they observed that elasticity
can suppress the shear layer transition regime and lengthen the recirculation region
behind the cylinder. Furthermore, they also measured pressure distributions along the
cylinder surface and found that below a Reynolds number of approximately 800, drag
was reduced for both fluids, while above 800, the drag was increased. They attributed
the drag reduction to a rise in the back pressure, while the drag increase at high Re
resulted from an eventual transition of the shear layer.

In addition to these, studies have also been performed for high Re flow of surfactant
solutions past cylinders. Bergins, Nowak & Urban (2001) investigated the wake
through Schlieren visualization and laser Doppler velocimetry. They found that for
a single solution of tetradecyl trimethyl ammonium salicylate with sodium bromide,
the wake structure becomes completely stabilized at a certain critical Reynolds number
as Re is increased from 270 to 2000. This critical Re is associated with the ‘shear-
induced structure’ found in surfactant solutions when micelles form coherent structures
in flows with high shear rates. Vortex shedding behind the cylinder is completely
suppressed, and the influence of the cylinder is observed far upstream. Similarly,
Ogata, Osano & Watanabe (2006) performed measurements of cylinder drag at high
Reynolds numbers in flows of oleyl-bihydroxyethyl methyl ammonium chloride at
various concentrations and found both drag increases as well as reductions depending
on Re. At Re < 2000, the drag is increased relative to the Newtonian case, due to the
large stagnation zone which appears upstream of the cylinder. At higher Re, this zone
is suppressed and the base pressure rises, reducing the drag.

For the present case, we expect that at Reynolds numbers within the shear layer
transition regime, highly elastic (low shear-thinning), dilute polymer solutions will
stabilize the flow and inhibit the formation of the turbulent cylinder wake. At Reynolds
numbers below the shear layer transition, Cadot & Kumar (2000) observed the
suppression of the mode A instability through injection of polyethylene oxide (PEO),
which was consistent with the findings of our previous numerical studies (Richter et al.
2010, 2011). For higher Reynolds numbers, we can look to studies on the viscoelastic
free shear layer to predict the effect within the cylinder wake. For instance, the
works of Azaiez & Homsy (1994a), Kumar & Homsy (1999) and Yu & Phan-Thien
(2004) all indicate that viscoelasticity reduces the Kelvin–Helmholtz rollup instability
within a mixing layer, which in the context of the wake would indicate a significant
stabilization at sufficiently high Reynolds numbers.

2. Problem formulation
2.1. Governing equations

The dimensionless mass and momentum conservation equations in the presence of an
extra polymeric stress are presented below:

∂uj

∂xj
= 0, (2.1)
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The flow Reynolds number, Re= ρU∞D/(µp+µs), is based on the cylinder diameter
D, the free-stream velocity U∞, the fluid density ρ, and the total solution zero-shear-
rate viscosity µT , made up from a polymer contribution µp and a solvent contribution
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µs. Similarly the Weissenberg number, Wi = λU∞/D, is based on the diameter D and
free-stream velocity U∞, as well as the polymer relaxation time λ, and represents the
ratio of the polymeric stress relaxation time scale to the convective time scale of the
flow. Finally, the parameter β = µs/(µp +µs) represents the contribution of the solvent
viscosity to the total solution viscosity.

As was done in previous studies of the viscoelastic cylinder wake (Richter et al.
2010, 2011), closure of the momentum equation was achieved by employing the
FENE-P model to represent the extra stress τ p

ij :

τ
p
ij =

cij

1− ckk

L2

− δij. (2.3)

The FENE-P model introduces a maximum length which bounds polymer stresses,
and this is manifested in the above equation through the polymer extensibility L.
Furthermore, cij is the polymer conformation tensor, and is subject to an evolution
equation derived from a balance of stretching and spring restoring forces within the
bead-spring approximation of a single polymer:
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This viscoelastic representation assumes a dilute, homogeneous polymer
concentration throughout the flow field, and has been proved to elucidate essential
physical processes in other high Reynolds number, non-Newtonian flows (see for
example Sureshkumar et al. 1997; Kumar & Homsy 1999; Dimitropoulos et al. 2006).

2.2. Numerical method
To solve the ten governing equations presented in the previous section, the same code
described in Richter et al. (2010) was utilized. Only a brief description of the method
will be given here; further details can be found in previous works (Richter et al.
2010, 2011).

The code is based on an unstructured, finite-volume formulation using a fractional
step approach to satisfy the incompressibility (divergence-free velocity) condition.
Velocity and scalar derivatives are discretized with central differencing, with the
exception of scalar convective derivatives (i.e. derivatives of the cij components within
the advection term), which are discretized using quadratic upwinding (QUICK). The
solution is advanced in time with the second-order Crank–Nicolson scheme. The time
step is chosen with a constant dimensionless 1t, set at 1t = 0.0045 for Newtonian
simulations and 1t = 0.002 for viscoelastic simulations (note that when comparing
this to the fluid relaxation time, λ is equal to Wi since both the diameter D and
upstream velocity U∞ are set to 1.0)

As described in Richter et al. (2010), the method introduced by Dubief et al. (2005)
to limit polymer stretch to the maximum extensibility L is used to guarantee polymer
stretch and stress boundedness at each time step, resulting in a robust numerical
scheme which can simulate high Reynolds number, high Weissenberg number, and
high polymer extensibility flows. It should be noted that for numerical stability, global
artificial diffusion is introduced for the components of cij, and the resulting Schmidt
number (Sc = νT/Γ , the ratio of total solution kinematic viscosity to scalar diffusion)
is equal to 0.77 throughout this study. In previous studies of unsteady viscoelastic
flows, the effect of artificial diffusion for cij has been investigated, and was seen
to have little effect when Sc = O(1) (Dubief et al. 2005; Richter et al. 2010).
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FIGURE 1. Schematic of the computational domain.

Furthermore, Yu & Phan-Thien (2004) looked specifically at the effect of artificial
diffusion for the FENE-P model in a high Reynolds number, viscoelastic mixing layer,
and found that although a small amount of smoothing of polymer stress gradients was
observed, it did not have an overall negative effect on the dynamics studied. They
tested multiple schemes for introducing their diffusion (both a constant and adaptive
diffusivity), and for the coarsest mesh used their Schmidt number, as defined above,
is approximately Sc ≈ 6. For the current case, we anticipate that for higher Schmidt
numbers, gradients of cij would merely grow stronger locally, while the underlying
mechanisms found in this study will still be active (and perhaps even stronger due to
sharper polymer stress gradients).

2.3. Geometry and boundary conditions
A schematic of the domain used to study the flow over an unbound cylinder is shown
in figure 1. The domain extends 23D radially upstream and 45D downstream of the
cylinder in the xy plane. No-slip conditions for the velocity (ui = 0) and no-flux
conditions for the conformation tensor (∂cij/∂n = 0) are specified along the cylinder
surface. Along the curved inlet upstream of the cylinder as well as along the horizontal
surfaces above and below the wake, the free-stream velocity is set to be U∞ = [1, 0, 0],
and the conformation tensor is set to the near-equilibrium value of cij = δij (stress-free
equilibrium implies cij = δij only as L→∞, but only small differences exist for
L= O(10) and above). Along the vertical outlet plane, convective outlet conditions are
used for both ui and cij. The spanwise extent is πD, and periodic boundary conditions
are applied to all flow quantities in the z direction.

3. Validation
At a Reynolds number of 3900, turbulence dominates the flow field, and therefore a

wide range of spatial and temporal scales exist throughout the cylinder wake. Typical
Newtonian studies in this Reynolds number regime consist of large eddy simulations
(LES), using a subgrid model to account for unresolved dissipative motions beyond
those that the computational mesh can explicitly represent (see for instance Beaudan &
Moin 1994; Kravchenko & Moin 2000; Parnaudeau et al. 2008). For the present study,
however, the flow is computed without any sub-grid model, since its formulation in the
presence of an active scalar (viscoelasticity) is uncertain at best. In fact, in their work,
Kravchenko & Moin (2000) compared simulations with and without subgrid models,
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FIGURE 2. Mean (a) streamwise and (b) transverse velocity profiles in the near and far wake.
Data are shown for three spanwise grid resolutions, as well as that from Kravchenko (1998).
Far-wake profiles are also compared to experimental data of Ong & Wallace (1996). Symbols
are as follows: ×, Kravchenko (1998); +, Ong & Wallace (1996); ◦, N64; �, N80; �, N128.
Overbar indicates average over the span and time (at least 20 shedding cycles). (a) u/U∞;
(b) v/U∞.

and reported small influences of the presence of the model. Furthermore, Rai (2008)
performed simulations on grids comparable in size to those used for LES, but using
no subgrid model, and his results suggest that turbulence statistics and spectra could
be well reproduced for high-order upwinding schemes. Therefore, to ensure that the
absence of a subgrid model does not negatively impact the results for the present study,
validation of the numerical formulation will be illustrated based on mesh-converged
mean flow profiles and spectra for a Newtonian fluid, as well as their comparison with
existing experimental and numerical data.

Overall, the computational mesh is unstructured, and has a minimum spacing at the
cylinder surface of 1r = 0.0015D and 1θ = 0.027 radians. In the xy plane, the mesh
is the same as that used in Richter et al. (2010). Mesh convergence was done through
a refinement of the spanwise grid spacing. As mentioned above, the spanwise domain
size is πD, and the notation in the following figures is as follows: N64 refers to 64
spanwise grid points, N80 to 80 grid points, etc. Figure 2 shows mean streamwise
and transverse velocity profiles and figure 3 shows streamwise and transverse velocity
fluctuation profiles at several downstream locations for three different mesh sizes,
as well as the experimental results of Ong & Wallace (1996) and LES results of
Kravchenko (1998). It is clear that for these quantities, all three mesh resolutions
generally do well representing the mean flow characteristics both in the near- and
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FIGURE 3. Mean (a) streamwise and (b) transverse velocity fluctuation profiles in the near
and far wake. Data are shown for three spanwise grid resolutions, as well as that from
Kravchenko (1998). Far-wake profiles are also compared to experimental data of Ong &
Wallace (1996). Symbols are as follows: ×, Kravchenko (1998); +, Ong & Wallace (1996); ◦,
N64; �, N80; �, N128. Overbar indicates average over the span and time (at least 20 shedding
cycles). (a) u′2/U2

∞; (b) v′2/U2
∞.

far-wake regions. The largest discrepancies that exist between the N64 mesh and the
N80 and N128 meshes are located near the edge recirculation bubble, and this is a
direct result of a difference of within 5 % in the bubble’s computed length. This result
is not surprising based on the findings of Kravchenko & Moin (2000). Downstream of
the bubble region, seen in profiles taken at x/D > 3.0, all mesh resolutions perform
very well compared to both experiments and previous numerical LES calculations.

In addition to using mean flow profiles to assess the accuracy of the flow field,
streamwise and transverse one-dimensional energy spectra taken at several downstream
locations were also computed to compare with the works of Ong & Wallace (1996)
and Kravchenko (1998). This is shown in figure 4. In the figure, the spanwise-averaged
energy spectra E11 and E22 are non-dimensionalized by U2

∞D and are plotted against
frequency, which is non-dimensionalized by the primary vortex-shedding frequency
(fSt). The dominant peak in the E11 spectrum indicates the primary vortex-shedding
frequency, and lies at f /fSt = 2.0 since streamwise energy fluctuations repeat every half
shedding cycle. The dominant peak in the E22 spectrum also indicates the primary
shedding frequency (now at f /fSt = 1.0, since transverse fluctuations repeat every full
cycle), and this peak is followed by a second, harmonic peak located at f /fSt = 3.0.

Figure 4 shows that as the spanwise grid spacing is refined, very little improvement
is gained in the spectra. Furthermore, spectra taken farther from the cylinder become
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FIGURE 4. Newtonian dimensionless energy spectra E11/U2
∞D and E22/U2

∞D at several
downstream locations for three different spanwise grid resolutions. Computed data compared
to the experimental measurements of Ong & Wallace (1996) and the LES of Kravchenko
(1998). Frequency normalized with Strouhal frequency. Overlines in the case of energy
spectra E11 and E22 indicate spanwise averaging. (a) x/D = 5.0; (b) x/D = 7.0; (c) x/D =
10.0.

more and more numerically dissipative at small scales, illustrated by the premature
drop-off in the computed spectra relative to the data of Ong & Wallace (1996) and
Kravchenko (1998). Near the cylinder (especially x/D = 5), excellent quantitative
agreement is found over the entire frequency range, while by x/D = 7, and even
more so for x/D = 10, the grid in the xy plane becomes too coarse to resolve all
energy content at any spanwise grid spacing. For reference, Beaudan & Moin (1994)
quote values of the Kolmogorov length scale (ηK) at 3 downstream locations along the
wake centreline. These values are included in table 1, along with the corresponding
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ηK/D 1x/ηK 1y/ηK 1z/ηK

Shear layer 8.81× 10−3 2.8 1.3 4.4
x/D= 3.0 8.81× 10−3 7.9 1.6 4.4
x/D= 5.0 8.81× 10−3 13.6 1.6 4.4
x/D= 7.0 9.11× 10−3 17.5 1.5 4.3
x/D= 10.0 10.1× 10−3 22.7 1.3 3.9

TABLE 1. Values of the Kolmogorov length ηK/D from Beaudan & Moin (1994) and the
corresponding ratios of ηK to grid spacing at different locations within the wake.

values of 1x/ηK , 1y/ηK , and 1z/ηK at the same locations. Values are also included
at x/D = 3.0 and within the shear layer, assuming that ηK/D is the same as that at
x/D = 5.0. Furthermore, one can also compute the Kolmogorov time scale τK , which
at its minimum is τK ≈ 0.3, which is well above the time step used in all simulations.
It is also worth mentioning for the sake of comparison that the spectral element
simulations of cylinder flow at Re = 3900 by Ma et al. (2000), which they cite as
being fully resolved DNS, use for their finest grid resolution 902 spectral elements in
the xy plane (of polynomial order 10, resulting in a number of degrees of freedom up
to 1× 108) and 128 Fourier modes in the z direction.

For the purpose of this study, which is to investigate the effect of viscoelasticity
on the near-wake, these comparisons to experimental and LES data are considered
fully acceptable, since mechanisms of viscoelastic stability are ultimately found in
the near-wake region and are not dominant in regions which are not fully mesh-
resolved. Moreover, it has been observed in past turbulent, viscoelastic channel flow
simulations that the presence of viscoelasticity attenuates the energy spectra, requiring
less resolution at a given Reynolds number than its Newtonian counterpart (see Dubief
et al. 2005), thus alleviating any deficiency in the current mesh at representing
all spatial and temporal scales. As will be illustrated later, this is indeed the case.
Therefore, for nearly all simulations presented, 80 grid points over a spanwise length
of πD were used in the z direction. Due to the large computational times required, the
exceptions to this are the two simulations done at Weissenberg numbers other than 10
(those presented later in figures 11 and 12), which use 64 points in the z direction.

4. Numerical results
Before presenting the effects which viscoelasticity has on the detached shear layer

and wake of the cylinder, it is instructive to first examine various flow parameters.
Table 2 shows how the vortex-shedding frequency (non-dimensionalized by U∞/D to
create a Strouhal number), average drag coefficient, CD, and its components (viscous,
pressure, and viscoelastic) change with increasing values of polymer extensibility L.
Also contained in this table are the values of CD and St obtained by Kravchenko &
Moin (2000) for Newtonian flow at the same Re for comparison.

As the polymer extensibility L is increased, there is a slight (2 %) reduction in CD

at L = 10, followed by a 12 % increase as L approaches 100. This non-monotonic
response of the drag versus increasing L is similar to the behaviour found at a much
lower Reynolds number (Re = 100; see Richter et al. 2010), and its causes are similar
as well. Figure 5 shows average values of pressure coefficient Cp = 2(p − p∞)/ρU2

∞,
viscoelastic local shear stress, and viscoelastic local normal stress over the cylinder
surface. From figure 5(a) it is immediately clear that as the polymer extensibility is
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CD C
viscous
D C

pressure
D C

polymer
D St

Newtonian 0.984 0.044 0.940 — 0.211
L= 10 0.965 0.041 0.921 0.004 0.216
L= 50 0.990 0.027 0.895 0.068 0.218
L= 100 1.103 0.011 0.917 0.174 0.189
Kravchenko & Moin (2000) 1.04 — — — 0.210

TABLE 2. Average drag coefficient CD and its components C
viscous
D , C

pressure
D , and C

polymer
D ,

as well as dimensionless vortex-shedding frequency for increasing polymer extensibility L.
The values of CD and St from Kravchenko & Moin (2000) are included as well.

increased, the pressure on the downstream side of the cylinder increases monotonically,
which, by itself, would lower the drag as in the case for L = 10. As L is increased,
however, two factors offset this rear pressure rise: an additional viscoelastic drag
(C

polymer
D , representing polymer stresses acting directly on the cylinder surface) and a

rise in the forward stagnation pressure. This effect is most obvious for L= 100, where
the pressure component is larger than that of the Newtonian case, and the viscoelastic
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component becomes a significant fraction (nearly 20 %) of the total drag. As seen in
figures 5(b) and 5(c), the surface values of viscoelastic stress (both shear and normal
components) are centralized on the upstream side of the cylinder, between the forward
stagnation point and the cylinder top/bottom. With an increase of L, these stresses are
amplified while maintaining a similar shape, and for L = 100 approach an order of
magnitude similar to that of the pressure stress. Finally, the increase of the form drag
as polymer extensibility is increased was discussed in detail in Richter et al. (2010),
and results from a region of large, ‘solid-like’ polymer stress at the forward stagnation
point.

Of the few experiments that exist for polymeric flows past a cylinder at high
Reynolds number, Kato & Mizuno (1983) measured average values of drag as well
as pressure distributions over the cylinder surface over a very wide range of Re,
and in general found reductions in CD over the range 103 < Re < 105. Focusing on
Re ≈ 3900, they show that for three different molecular weights of PEO (2 × 106,
3 × 106, and 4 × 106 g mol−1), the reduction in drag is non-monotonic for increasing
polymer concentration. Furthermore, they see that the reductions in drag are due to
a rise in the back pressure, agreeing with the present simulations, and that for high
concentrations there is a slight increase in the forward stagnation pressure. While
they do not ultimately see an increase in drag as in the present results for large L,
their non-monotonic behaviour of the drag with increasing concentration appears to be
consistent with our results: as the solutions become more elastic at high concentrations,
the back pressure rise and corresponding drag reduction begins to be offset by an
increased forward stagnation pressure. Moreover, they assume the form drag is the
only component of the total drag. Based on table 2, this assumption is justified in
neglecting the Newtonian viscous stresses on the cylinder, but the polymer stresses
acting on the surface may be significant.

In addition to this, Coelho & Pinho (2004) measured increasing drag with increasing
Re, falling below that of Newtonian flow for Re less than approximately 1000 and
above for Re larger than 1000. This modest increase in drag would agree with the high
L case seen in the current study, but even qualitative comparisons are difficult due to
the high degree of shear thinning in the fluids used in their study (a fluid property not
strongly present in our numerical model). Ogata et al. (2006) also see back pressure
increases competing with upstream elastic effects, but this is for phenomena associated
with micelle solutions and caution should be taken when relating these effects to the
current numerical results.

4.1. Wake stabilization
When adding the effects of viscoelasticity, profound changes are identified in the
wake as the polymer extensibility is increased. Figure 6 illustrates this qualitatively,
showing surfaces of constant streamwise vorticity at ωx = ±3.0. For the Newtonian
case (figure 6a), the entire wake has transitioned to turbulence, due to the turbulent
shear layer immediately behind the cylinder. For a short polymer extensibility of
L = 10 (figure 6b), no significant changes are seen in the structure of the wake. This
is similar to the findings of Richter et al. (2010, 2011); additional polymeric stresses
at L= 10 do not have sufficient magnitude to exert significant changes in the turbulent
flow structures. As the polymer extensibility is increased further, however, a dramatic
change in the morphology of the wake emerges. At L = 50 and more so at L = 100,
the wake suddenly becomes much more coherent in nature, displaying not only an
extended recirculation region (also seen in the previous Reynolds number analyses of
Richter et al. 2010), but a streamwise vorticity structure reminiscent of the mode B
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(a)

(b)

(c)

(d )

FIGURE 6. Instantaneous streamwise vorticity isosurfaces (ωx = ±3.0) in Re = 3900 flow.
(a) Newtonian; (b) Wi = 10, L = 10, and β = 0.9; (c) Wi = 10, L = 50, and β = 0.9;
(d) Wi = 10, L = 100, and β = 0.9. The left image is looking through the cylinder in the
downstream direction and the right image is the view from above the wake.

instability seen at much lower Reynolds numbers in Newtonian flows (see Williamson
1996a for a description of the mode B instability). The alternating streaks of positive
and negative vorticity possess the correct symmetry and roughly the proper wavelength
to match that of the mode B hyperbolic instability, and thus it would appear that
viscoelasticity has delayed the Newtonian modes of turbulent transition.

To get a more quantitative view of this effect, one-dimensional energy spectra taken
at several locations downstream are plotted in figure 7. For the L = 10 case, no
detectable change in the energy content is found at any point downstream, consistent
with the qualitative evidence found in figure 6. For L = 50 and L = 100, energy
content, especially for that of E11, is diminished by up to two orders of magnitude
along the entire wake extent. This again shows that small-scale turbulent energy is
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FIGURE 7. Dimensionless energy spectra E11/U2
∞D and E22/U2

∞D at several downstream
locations. Viscoelastic computations are at Wi = 10, β = 0.9, and varying L between L = 10,
L = 50, and L = 100. Frequency normalized with Strouhal frequency. Overlines in the case
of energy spectra E11 and E22 indicate spanwise averaging. (a) x/D = 3.0; (b) x/D = 5.0;
(c) x/D= 7.0.

being nearly eliminated in the entire wake, suggesting a dramatic stabilization due to
the presence of viscoelasticity.

5. Mechanism
In general, viscoelasticity has previously been seen through numerical studies to

have a stabilizing effect on rollup instabilities found in mixing layers (Azaiez &
Homsy 1994a,b; Kumar & Homsy 1999; Yu & Phan-Thien 2004). Depending on
the Reynolds number and Weissenberg numbers found locally in the layer, both two-
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(a) (b)

(c) (d )

FIGURE 8. Instantaneous spanwise vorticity isosurfaces (ωz = ±9.0) in Re = 3900 flow,
focused on separated shear layer. (a) Newtonian; (b) Wi = 10, L = 10, and β = 0.9;
(c) Wi= 10, L= 50, and β = 0.9; (d) Wi= 10, L= 100, and β = 0.9.

dimensional as well as subsequent three-dimensional transition modes are inhibited by
the presence of elasticity. Therefore, we will direct our focus to this location when
searching for a wake stabilizing mechanism.

Figure 8 shows surfaces of spanwise vorticity at ωz = ±7.0 in the region
immediately downstream of the cylinder. With increasing polymer extensibility, the
effect of viscoelasticity is clear: the instabilities which form in the shear layer for the
Newtonian case are suppressed under the influence of high elasticity, in agreement
with predictions from viscoelastic shear layer studies. From this, it can also be
concluded that for the L = 10 case, changes to the wake structure were not observed
in figure 6 due to its inability to fully stabilize the mixing layer, prior to primary
vortex shedding. This effect is entirely consistent with two of the few experimental
studies devoted to the viscoelastic shear layer. Both Riediger (1989) and Hibberd,
Kwade & Scharf (1982) observed, through flow visualization, reduced levels of small-
scale turbulence in a mixing layer containing polymer or surfactant additives, as well
as stronger and more persistent large-scale structures. More importantly, however,
the figures in both studies comparing the viscoelastic to Newtonian shear layers
show that the non-Newtonian mixing layer takes noticeably longer to develop these
coherent structures (in terms of distance from the splitter plate), which, in the case
of the cylinder wake, indicates that stabilization of the shear layer could certainly be
achieved before the primary vortex is shed.

Bloor (1964) was the first to measure the characteristic instability frequency found
in a transitioning shear layer behind a cylinder, noting that it was greater than that of
the primary vortex-shedding frequency. For energy spectra taken within this layer, its
presence is therefore manifested as a broad peak located at higher frequencies than the
primary vortex peak. This is illustrated very clearly by Prasad & Williamson (1997),
and as a result, E11 and E22 spectra were taken at similar locations in the present
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FIGURE 9. Dimensionless energy spectra E11/U2
∞ and E22/U2

∞ taken within the shear
layer immediately behind the cylinder, comparing Newtonian energy spectra to viscoelastic
computations with Wi = 10, β = 0.9, and varying L between L = 10, L = 50, and L = 100.
Frequency normalized with Strouhal frequency. Note the pronounced shear layer frequency
peak around f /fSt ≈ 6 for Newtonian and L= 10 flow.

study to observe the evolution of this peak with increasing elasticity. Figure 9 contains
these plots, and for Newtonian flow, this broad shear layer instability peak is plainly
visible at fSL/fSt ≈ 6.0, where fSL is the shear layer instability frequency and recalling
that fSt is the primary Strouhal (primary vortex) frequency. For L= 10, it is interesting
to note a diminished magnitude of energy content throughout the range of scales, but
both spectra still exhibit a pronounced instability occurring in the shear layer. This
indicates that the shear layer still transitions, just not as energetically. For L = 50 and
L = 100, it is not surprising to see this instability peak eliminated, illustrating that
viscoelasticity is truly affecting the wake dynamics, beginning as early as within the
detached shear layers.

To relate the stabilization seen in the Re = 3900 cylinder wake to the studies of
Azaiez & Homsy (1994a,b), Kumar & Homsy (1999) and Yu & Phan-Thien (2004),
local values of the Reynolds and Weissenberg numbers were computed using quantities
from the separated shear layers:

Reδ = 2U0δ

νT
, (5.1)

Wiδ = λνT

δ
. (5.2)

In these local definitions, δ is a measure of the shear layer thickness, and U0 is
one-half the velocity difference across the shear layer. These lead to a quantity known
as the elasticity number, which is the ratio of the Weissenberg number to Reynolds
number:

Eδ = Wiδ
Reδ
= λνT

δ2
. (5.3)

Note that for all cases shown thus far, the Weissenberg number based on the cylinder
diameter has been set to Wi = 10, leading to a relaxation time of λ = 10 since D = 1
and U∞ = 1. As a result, the differences in the values of Reδ and Wiδ between cases as
L is increased are entirely due to the changes in the mixing layer thickness δ, which
for the cases presented below is calculated as the difference in the locations above and
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below the shear layer where the spanwise vorticity ωz is 10 % of maximum vorticity in
the layer. For Newtonian, L = 10, and L = 50 flow, Reδ ≈ 570, while for the L = 100
case, it was reduced to Reδ ≈ 370. Similarly, Wiδ for the L= 10 and L= 50 cases was
close: Wiδ ≈ 110, leading to an elasticity number of Eδ ≈ 0.2. For the L = 100 case,
Wiδ ≈ 150, leading to an elasticity number of Eδ ≈ 0.4.

In their linear stability analysis, Azaiez & Homsy (1994a) found that in the inviscid
limit while the elasticity number was maintained at Eδ = O(1), growth rates of the
rollup instability were inhibited by the presence of viscoelasticity. This was due to a
phase shift in the source and sink regions of vorticity production as viscoelasticity
(Eδ) was increased, which ultimately led to the inability of vorticity to form a
single core. This mechanism was further confirmed by Kumar & Homsy (1999),
who quantified this phase shift as a broadening of the range of frequency content
contained along a viscoelastic shear layer versus its Newtonian counterpart. This
increased frequency content has in fact been observed experimentally by Sausset,
Cadot & Kumar (2004), and prevents the dominant instability mode from growing.
Kumar & Homsy (1999) also identified through their full simulation of the rollup
process two parameter regimes which could lead to inhibited vortex formation: (i) at
high polymer extensibility L and (ii) when the elasticity number is Eδ = O(1) and
higher. These two regimes will be related to the present study one at a time.

We have already demonstrated in figures 8 and 9 that the separated shear layer
immediately behind the cylinder can be stabilized, even in the presence of relatively
low elasticity numbers, as long as the extensibility L is sufficiently large (Eδ = 0.4 for
L = 100). High L leads to large normal stress gradients, which was what Kumar &
Homsy (1999) identified as being a critical component to rollup inhibition. To quantify
this effect, the viscoelastic contribution to the evolution of spanwise vorticity (the
viscoelastic term of the ωz equation) was computed within the separated shear layers:

Tvz =
1− β
Re

1
Wi

[
∂

∂x

(
∂τ

p
2k

∂xk

)
− ∂

∂y

(
∂τ

p
1k

∂xk

)]
. (5.4)

Tvz is the spanwise component of the ‘polymer torque’ discussed by Kim et al. (2007),
and represents the amount of resistance to rotational motion due to the local presence
of viscoelasticity. This viscoelastic source (or sink) is clearly dependent on polymer
stress gradients as well as the Weissenberg number. Contours of this polymer torque
are shown in figure 10 for the L= 10 and L= 100 cases. Solid lines show contours of
spanwise vorticity ωz.

From figure 10(a) it is observed that low values of L do not produce values of
Tvz large enough to inhibit rollup. At the location of shear layer breakdown, only
modest levels of polymer torque are observed, and they clearly do not prevent the
instability from forming. For L = 100, however (figure 10b), a unique pattern of
Tvz forms midway downstream within the shear layer: for the upper shear layer, a
region of high positive Tvz (vorticity source) lies on top of a region of low negative
Tvz (vorticity sink), and this top/bottom combination repeats itself several times in
the downstream direction with a characteristic wavelength of the order of the shear
layer thickness (note that for the bottom shear layer, a vorticity sink lies above a
vorticity source). From the discussions of Azaiez & Homsy (1994a) and Kumar &
Homsy (1999), we can immediately confirm what is happening in the case of high
L. Azaiez & Homsy (1994a) found through their linear stability analysis that with
increasing viscoelasticity, the regions of vorticity and velocity perturbations which,
acting together, are responsible for the rollup instability, become skewed and less
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FIGURE 10. Contours of viscoelastic spanwise vorticity production, Tvz , shown with the same
scale for (a) Wi = 10, L = 10, β = 0.9; (b) Wi = 10, L = 100, β = 0.9. Solid lines show
contours of spanwise vorticity ωz at 10 levels ranging from −706 ωz 6 70.

effective at initiating the instability (see their figures 7 and 8). Kumar & Homsy (1999)
confirmed this stabilization through two-dimensional nonlinear simulations and found
that the viscoelastic sources and sinks of vorticity occur between primary rolls, which
disrupts the streamwise distribution of vorticity and prevents the flow from effectively
forming a single core. We therefore conclude that for the present case, as the layer
tries to roll up and form the well-known ‘cat eye’ pattern, viscoelasticity responds by
providing the vorticity source/sink pattern of figure 10(b) near the extensional regions
between rolls, which perturbs the vorticity distribution in the streamwise direction and
ultimately prevents the shear layer rollup. This source/sink pattern is therefore exactly
out of phase with the location of the primary rolls (since it occurs in the region
between cores), and for high enough L the shear layer remains completely intact and a
primary vortex is shed nearly uninhibited.

Based on the definition of Tvz , as the Weissenberg number is reduced (either that
based on D or Wiδ), one would expect that eventually, even at high L, rollup
inhibition would no longer exist. Physically, this implies that viscoelastic stresses
relax so quickly that they cannot produce a polymer torque large enough to inhibit
rollup. Upon reducing the shear layer Weissenberg number to Wiδ ≈ 1 (Wi based on D
equal to 0.1), this is in fact observed. Figure 11 shows the same surface of spanwise
vorticity seen in figure 8(c) for L = 50. It is clear that at such a low value of Wiδ, the
shear layer remains unstable despite the large value of L.

Based on the other regime identified by Kumar & Homsy (1999), one would also
expect the inverse to be true: even at low L, large values of Eδ should be sufficient to
stabilize the shear layer and prevent the rollup instability from forming. To test this,
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FIGURE 11. Instantaneous spanwise vorticity iso-surfaces (ωz = ±9.0) in Re = 3900 flow,
for Wiδ = 1 (Wi = 0.1 based on D), L = 50, and β = 0.9. Low Wiδ leads to polymer torques
which are insufficient at stabilizing shear layer, even at L= 50.

FIGURE 12. Instantaneous spanwise vorticity iso-surfaces (ωz = ±9.0) in Re = 3900 flow,
for Wiδ = 2400 (Wi = 200 based on D), L = 10, and β = 0.9. High Wiδ does not further
stabilize shear layer at L= 10 due to a saturation in viscoelastic stresses.

a simulation was performed with L = 10, while increasing the Weissenberg number to
Wiδ = 2400 (Wi based on D of 200). This results in an elasticity number of Eδ ≈ 5
– an elasticity number seen by Kumar & Homsy (1999) to prevent rollup. The surface
of spanwise vorticity for this case is displayed in figure 12, and should be compared
with figure 8(b).

It is clear that despite a high elasticity number, and contrary to what is predicted
by Kumar & Homsy (1999), increased elasticity numbers in the low L regime does
not lead to a stabilized shear layer. The explanation for this apparent contradiction
lies in the fact that the shear layers studied in Azaiez & Homsy (1994a) and Kumar
& Homsy (1999) are developing; i.e. polymer stresses are forming at the same time
rollup is initiated. Therefore, an increase in elasticity number results in a change in
the vorticity diffusion coefficient relative to the polymer torque contribution. In the
context of the cylinder wake, however, polymers are stretched to near 100 % of their
extensibility upstream of the shear layer, leading to rollup formation in the presence
of a saturated polymer stress state. Increasing Wiδ implies that viscoelastic stresses are
sustained for longer times, but in the region immediately behind the cylinder, these
stresses are at a maximum for low L even for low values of Eδ. Therefore, increases in
Eδ have no effect on the rollup instability which then forms.
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pmin |ωz|
Newtonian −1.11 8.81
L= 10 −1.04 8.74
L= 50 −0.721 5.33
L= 100 −0.571 5.506

TABLE 3. Comparison of instantaneous spanwise-average pressure p̄ at a point during
primary vortex rollup, as well as magnitude of spanwise vorticity at the point of minimum
pressure. Viscoelastic cases are for Wi= 10 and β = 0.9.

6. Further discussion
It was mentioned in the Introduction that tip vortex cavitation suppression is one

of the motivations behind studying high Reynolds number, viscoelastic bluff body
flows. As one final note, it seems worthwhile to quickly relate the current study to
this particular engineering application. For Wi = 10, increasing L was seen to greatly
reduce the turbulence, not only in the shear layer but in the wake as well (cf. figure 6).
We now look at the spanwise-averaged, minimum instantaneous pressures taken within
a developing primary vortex core, which are presented in table 3. The minimum
relative pressure inside a developing core is monotonically increasing (becoming less
negative), indicating that polymer injection can greatly affect the point of cavitation
inception for bluff body flows. Alongside the minimum pressure, table 3 also displays
the spanwise vorticity magnitude at the point of minimum pressure. These values
decrease monotonically as well, suggesting that rising core pressure is directly related
to the reduction of vorticity within the developing vortex.

7. Conclusion
For the first time, simulations were performed of turbulent viscoelastic flow past a

circular cylinder in order to study the effects which polymer additives have on the
structure of a high Reynolds number wake. As in previous studies (Richter et al.
2010, 2011), the characteristic wake structure at Re = 3900, which begins with a
transitioning detached shear layer, is stabilized in the presence of non-Newtonian
elastic stresses. After the present analysis, we postulate that the mechanism of
this stabilization is one where viscoelasticity stabilizes the shear layer through the
development of vorticity sources and sinks within the layer, whose spatial orientation
prevents Kelvin–Helmholtz rollup. This in turn allows for a coherent (as opposed to
turbulent) primary vortex to be shed, which is then subject to the same types of elliptic
and hyperbolic instabilities dominating the wake structure at Reynolds numbers below
the onset of the Newtonian shear layer instabilities. This mechanism would explain
the pattern found resembling that of the mode B instability seen in figure 6 at high
polymer extensibility and, in addition to that found in Richter et al. (2011), constitutes
another instance of wake stabilization due to viscoelasticity.

As a final point, it is noteworthy to briefly relate the underlying stabilization
mechanisms observed in the present case with those of wall-bounded turbulent drag
reduction. The key process observed in the high Reynolds number wake was the
permanent suppression of the rollup instability in the detached shear layer due
to a viscoelastic response in the region between forming rollers. The effects of
polymer additives in turbulent wall-bounded flows is somewhat similar, in the sense
that polymers act through stretching in the extensional regions between the vortical
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structures, but the flow response to each is quite different. In the context of drag
reduction, the process of polymer stretching between streamwise vortices extracts
energy from the flow and reduces momentum transport to the wall, thus reducing the
skin friction drag (Dubief et al. 2004), while for the cylinder wake viscoelasticity
only needs to act in a localized region near the shear layer to allow a coherent
primary vortex to form. Another important difference is the temporal behaviour of
each process: in the cylinder wake, the rollup instability is permanently suppressed
for high enough elasticity, while in the case of drag reduction the near-wall vortices
are only temporarily weakened, and the effects of polymers are part of a turbulent
self-regeneration cycle where the weakened vortices allow polymers to relax, which
then results in turbulence starting once again (Xi & Graham 2010). Furthermore,
another point of comparison lies in the cylinder boundary layer itself, which for
our sub-critical Reynolds number remains laminar. At higher Reynolds numbers, the
transition of this boundary layer will likely be directly affected by viscoelasticity, and
mechanisms can be sought from the turbulent drag reduction literature. These points
therefore highlight the importance of continued work to elucidate the unique roles
which viscoelasticity plays in the bluff body wake.
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